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It is shown that in order to minimize its free energy long chain polymers can assume a helical form with 
a definite functional relationship between pitch and radius. Although entropic disorder will render its 
lifetime short and coherence length limited, in processes involving short times and/or distances this helical 
tendency could very well play a role. 
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The shapes of long chain molecules at zero absolute 
temperature are governed largely by conformational 
requirements. At finite temperatures, we assume that the 
probability distribution (note that we concentrate on 
only one chain) takes the Rouse-Edwards  form 1 and is 
composed of two parts, i.e. the entropy term and an 
effective interaction V [ f(s)  - f(s '  )] among the monomers 
where s is the arc length parameter of the chain. The 
interaction V is an effective one because the solvent-  
monomer and solvent-solvent interactions have been 
taken into account in determining it. The probability that 
the chain assumes some spatial form ¢ = f(s)  is therefore 

P ( [ F ] )  ~- e [ -  a j \ d s ]  
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where fl = 1/kBT,  k~ is Boltzmann's constant, T is 
temperature and V is assumed to be repulsive from now 
on. The first term in the exponent comes from the entropy 
due to the wriggling of the chain and a is a constant 
inversely proportional to the squared length of the Kuhn 
statistical segment (see page 11 in ref. 1) which is long 
enough so that the local detailed chemical structures do 
not matter. The shape f (s )  satisfies 
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where A((, 7)  denotes f (s)  - f(s ' )  and V is supposed to 
depend only on the absolute value of its argument. 
Assuming the chain to be infinite, it is immediately seen 
that a straight line f = gs is always a solution, where 
is a unit vector. A more general class of solution consists 
of helices. Choosing the axis of the helix as the z axis 
gives the following parametric form for a helix of pitch 
x and radius to: 

z = ~cs x + iy = r o e is 

where f =  (x, y, z). On substitution into equation (1), 
it is seen that this shape is a solution, provided the 

0032-3861/92/061326432 
© 1992 B u t t e r w o r t h - H e i n e m a n n  Ltd.  

1326 POLYMER, 1992, Volume 33, Number 6 

equation 

1 -- - ~  -~ d~ 

(2) 
gives a real relation between x and r o. For  example, for 
a repulsive potential of range much shorter than the pitch 
of the spiral, one may replace the sine function by its 
argument, and the equation is then 

.If d~ ~V'(p~) (3) 1 -  2-~ _ v  P 

where p = x / ~  + ro 2. For  example, for an exponential 
potential V ( r )  = V o e -z" this gives p3 = f lVo/2a2,  or 

x 2 + r 2 = (4) 

Note that actual forms of the potential do not matter 
because if we redefine the dummy variable in equation 
(3) the integration becomes unitless and is just a constant. 

Note that as the temperature goes to zero, x and /or  
r 0 become large; presumably due to the repulsive force 
the model suggests that this chain tries to straighten out. 
At very high temperatures the repulsion is largely 
overcome, and both the radius and the pitch must be 
small, i.e. both curvature and torsion become large, as 
expected. Note also that no spiral solutions exist if V is 
purely attractive and is monotonically decreasing with 
distance. In a mixed case, such as short range repulsion 
and long range attraction, the issue cannot be decided 
without detailed calculation. 

To see if these stationary states are in fact minima in 
the energy, we first determine which of the spirals gives 
minimum energy. For  short-range potentials, equation 

2 (3) indicates that x 2 + r 0 will be a constant. Therefore the 
entropic contribution to the exponent of the distribution 
function will not depend on the apportionment between 
ro and x. The potential energy likewise depends only on 
that sum of squares if the potential is short-range. This 
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means that the stationary state is very flat, with very little 
to choose between different helices of constant p given 
by equation (3). This argument fails for very low pitch 
helices because it depends on the force range being much 
smaller than the pitch. 

Next, we write the equation determining the stability 
of the helix against arbitrary displacements. Writing 

+ fi for ~ and fi small, we get the following linearized 
equation for p: 

fi,, = A { ~ds'[fi(s) - / ( s ' ) ]  V' ( A ) 

_fds,{[fi(s)-fi(s')].A}(v'-v"A)&} 
A3 (5) 

where, as before, A = ((s)  - ~(s') and A is the absolute 
value. The (s are now the unperturbed coordinates of the 

helix. Finally, A = fl/2o~, and the integrals extend from 
- oo to + oo. Writing p = e i~s V e i"s, ~ ,  p, two equations 
for longitudinal and transverse components by equating 
equal powers ofe  i~ can be obtained and used to determine 
Y. 

Because we are dealing with a one-dimensional object 
in this model, this does not mean that helical shapes 
have any kind of permanence. Also, the usual entropic 
considerations concerning one-dimensional disorder 
presumably mean that they have only finite lifetime and 
very limited coherence length. Nevertheless it is of interest 
to determine if there would be observable effects in 
processes involving short times and /or  distances. 
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